Knowledgebase > CustomerPortal (fka WebPortal) > Miscellaneous > Web API Example Usage with Postman

Web API Example Usage with Postman

Cavallo Support - 2024-11-22 - Miscellaneous
Notes

For purposes of this demonstration, the SalesPad WebAPI is installed locally on port 5501. This means that all
example requests shown will start with http://localhost:5501. If following along with this documentation, replace
this with the server name and port number for your particular installation.

References to the API Help Page are referring the help page which can be found at your installation
location/Help (in our case, http://localhost:5510/Help).

SalesPad WebAPI supports JavaScript Object Notation (JSON). For more information on JSON, check out
http://www.json.org/.

Postman Rest Client

SalesPad developers have found a tool named Postman to be indispensable in testing and developing the
SalesPad WebAPI. Postman is a Chrome App, but can be run as a desktop application as well. You can download
the Packaged App here.

You may use any tools / code of your choice to send requests to the SalesPad WebAP]I, but for the purposes of
this demonstration we will be using Postman.

Creating a Session / Logging In

NOTE: You must create a session before attempting to request anything from the API. If you do not send a valid
Session- ID with subsequent requests, your requests will be denied. (It is also assumed that you will use a user
account that has admin (or all) permissions for all request types.)

To create a session, you must send a request to GET api/Session. This request must contain an Authorization
header for Basic Authentication (as specified on the API help page): Username and password should be in the
format of username:password, using the colon as separator, prefixed with the keyword Basic and encoded in
Base64.

In Postman, this is a simple process, as a Basic Auth tab is provided which will prompt you for Username and
Password, and do the rest for you. Enter your user information, then click Refresh headers. This will create an
Authorization header with the appropriate value:

Basic Auth 1 ¥ : [E ® o environment ¥
Usemame sa Mote.
-9
The jorization header will be
Password = generated and added &s & custom

ssworg Neader.

| show Pa:

Refresh headers

Clear

Save helper data to reguest |

http:/localhost:5501/api/session GET v URL params Headers (1)

[Authurizatiun Basic c2E6C2E=] Add preset ¥ Manage presets

Preview Pre-request script Tests Add to collection E

Next, enter your server name, port, and api/session (in our case, http://localhost:5501/api/session), make sure
the Http Request Method is GET, and click Send:

https://support.cavallo.com/
https://support.cavallo.com/kb
https://support.cavallo.com/kb/customerportal-fka-webportal
https://support.cavallo.com/kb/miscellaneous
https://support.cavallo.com/kb/articles/web-api-example-usage-with-postman
https://support.cavallo.com/kb/miscellaneous
http://www.json.org/
https://chrome.google.com/webstore/detail/postman-rest-client-packa/fhbjgbiflinjbdggehcddcbncdddomop
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/basic-authentication

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth2.0 1o environment ¥

Usemame sa Note
The suthorization header will be
Password genersted and added &s & custom
() show Password eader.
Clear Refresh headers

Save helper data to request)

[rttpocainost 5501 f’api!sessimn}—o GET

Authorization Basic c2E6C2E=

Header Value B

P} Pre-request script Tests Add to collection

v Qparams

Add preset Manage presets

Headers (1)

The response should pop up below, and look something like this (If it doesn’t look as nice, make sure the Pretty

tab is selected):

Body Cookies Headers (15) Tests 200 0K m 49 ms

Pretty =~ Raw Preview et Cl |8 JSON -

“SessionID™: “BEBaTEfE—a4af—4d?f-bh59—1d6613?a49?3"J
— "SystemGroup™: {

"Security_Group"”: “admin",

"Security”: null,
"Is_External_Group": false,
"Layout Path™: "",
"UserFieldData": null,
"UserFieldNames": null,
"CoresaveOnly": false,
"Partiallyloaded": false,

"UserFriendlyName": “System Group™,

Thlnda La st dmme s =011

The response will contain information about the user, such as the Security Group it belongs to, Object and
Property Permissions, Group Permissions, and any User-Customer associations. However, in our case, all we
really care about is the SessionID value given, as this is our ticket to make further requests. This value must be

used with a Session-ID header for all following requests:

Normal | Basic Auth | Digest Auth | QAuth 1.0 | OAuth 2.0 @ o environment ¥

Enter request URL here

Session-1D 908a79fe-adaf-4d7-bb59-1d661 375
Header Value g

m Freview Pre-request script Tests Add to collection

Retrieve a Customer

To retrieve Customer information, we can send a GET request to api/Customer endpoint. The API Help Page
shows us that there are two kinds of GET requests we can make - one using OData, and one using the Primary
Keys of the Object (in this case, the Customer Num):

Customer

CRUD operations for Customer

API Description
GET api/Customer ODATA enabled get Customer requests.
GET api/Customer/{Customer_Num} Get Customer requests.

MAOT AanilfTontmnnor Mranta Toactamnnr abhiooede

For our example, we will retrieve Customer Aaron Fitz Electrical, from the Sample Company setup provided by
Dynamics GP.

We can do this using either endpoint:
e GET api/Customer/AARONFIT0001
OR
e GET api/customer?$filter=Customer Num eq 'AARONFIT0001'

For the OData enabled endpoint, we simply filter to customers where the Customer Num is AARONFIT0001, and
we end up with the same results. (See the API GettingStarted page for more information on OData).

For this request, you can use the Normal tab in Postman, as we don’t need the Basic Authentication anymore.
Begin by copying the SessionID value provided by the GET api/Session request, and paste it as the value for a
Session-ID header (as shown previously). Then enter the URL you wish to use:

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth20 ® 1o environment ¥
[http:.ﬂ'localhost:SSO1.Fapil’cuStomerFAARONFITOOO1] GET v URL params Headers (1)
[908a79fe-adaf-4d71-bb59-1d6613]] Add preset = Manage presets

Heade Value E

m Preview Pre-request script Tests Add to collection m

Again, make sure the Http Request Method is GET, and click Send. A successful response should look like the
following:

Body Cookies Headers (15) Tests m 200 DK m 26 ms

Pretty Raw Preview =& Q E |3 JSON +

"Customer_ Num"”: "AARONFIT&221 “,
"Customer_Name": "faron Fitz Electrical ",
"Customer_Class": "USA-ILMO-T1 *,
"Corporate_Customer_MNum™: " ",
“Short_MName": “Aaron Fitz Elec”,
"Statement_Name": "faron Fitz Electrical ",
“Primary_ Addr_Code"™: “PRIMARY ",
"Primary_Bill To_Addr_Code": "PRIMSRY ",
“Primary Ship To Addr_ Code™: "WAREHOUSE ",
"Statement_To_Addr_Code"™: "PRIMARY ",
“Sales Person_ID": "PAUL W. ",
"Sales_Territory": "TERRITORY 1 ",
"Payment_Terms™: "MNET 3@ “,

"Chinmnmnine Mathad™ . "1 Aal DRI TUYEDY Y

All other GET requests should be made in a similar manner, using the SessionID created by the initial GET
api/Session request. See the API Help Page for all available endpoints.

Create a Customer

To create a new Customer, we will use the POST Http Request Method. When you change this in Postman, an
additional area for sending content with the request will pop up. We want to use the raw type, and it looks best
when formatted as JSON.

(When you select JSON, you may notice that Postman will add an additional Content-Type header of
application/json. Feel free to delete it or leave it as you see fit. This is normally what would describe the request
body type, but since SalesPad WebAPI only supports JSON, it is not necessary (but also does not hurt anything).)

Normal | Basic Auth | Digest Auth | OAuth1.0 | QAuth2.0 ® 1o environment ~
http:#localhost:5501/api/customer POST v Qpalams Headers (2)
Session-1D 908a79fe-adal-4d71-bb53-1d66137 Add preset = Manage presets
Content-Type application/json
Header Value E

form-data x-www-form-urlencoded Q JSON (application/json) ¥
al

Text

Text (text/plain)

JSON (application/json) 3
Javascript (application/javascript)
XML (application/xml)

XML (text/xmi) i

HTML (text/htmi)
m Preview Pre-request script Tests 1 e S N m

NOTE: Generally, a SalesPad Object can be created with as little as the Primary Key(s). However, we encourage
you to provide as much information as possible for better accuracy and fewer errors.

For example, we can create a Customer by only giving the Customer Number we wish to use:

{

"Customer Num": "TestCustomer",

}

Mormal | Basic Auth | Digest Auth | OAuth 1.0 | DAuth2.0 ® 1o environment *

hitpz//localhost:5501/api/customer POST v

URL params Headers (2)

Session-ID 908a79fe-adar-4071-hb59-1066131 i i
Content-Type application/json ¥ % b4
Header Value B
form-data x-www-form-urlencoded raw binary JSON (application/json) ¥

1%
i2 "Customer_Num": "TestCustomer”,

3|z

4

Preview Pre-request script Tests Add to collection

However, this Customer will only have a few default properties filled out; you will likely not be able to do

anything useful with this Customer until you have updated it with more information.
Body Cookies Headers (15) Tests m 201 Created E 120me

Pretty Raw Preview =L Q E |3 JSON +

"Customer_ MNum": "TestCustomer”,

oan
¥

"Customer_Name":

aear

“Customer_Class": ,

"Corporate_Customer Num™: ™",
"Short_Name": "",

amar
¥

"Statement_Name":

mn
a

"Primary_Bill To_Addr_Code™: "",
“Primary Ship To Addr_ Code™: "%,
"Statemeant Tn Addr rAdea™- ™"

“Primary_Addr_Code™:

NOTE: For Customers, SalesDocuments, and SalesLineltems, auto-numbering can be accomplished by not
providing the Primary Key you wish to be created for you. For example, we can POST a customer with just a

name, and we will see that the Primary Key (Customer Num) property is automatically generated:

{
"Customer Name": "Testing Customer Number Generation",

}

A successful response should look similar to the following:

Body Cookies Headers (15) Tests m 201 Created E 139 ms

Pretty Raw Preview =& Q E |3 JSON =

“Customer_ Num": "@egesl _.]

"Customer_Name": "Testing Customer Mumber Generation ™,

w oo

“Customer_Class": ,

won

"Corporate_Customer_Num®: »

“Short_MName™: ™ ",

"Statement_Name": ™ ",
“Primary_ Addr_Code™: ™ ",
"Primarw Rill Ta Addr rades™- " "

See the API Help Page for JSON samples which include all available properties for POSTing each Object type:

POST api/Customer
[F’OST api.fCustomer] _'* Create Customer objects

RET anilMuctamariTCuctamar KMnmli@alacl Req uest | nformatlon

Request body formats

Sample:

{
"Customer_Mum™: "sample string 1",
"Customer_ MName": "sample string 2",
"Customer_Class™: "sample string 3",
"Corporate_Customsr_Num": “sample string 4",
"Short_Name": "sample string 5",
"Statement_Name": "sample string 6",
"Primary_Addr_Code": "sample string 7",

gy A et L SR TIN T 4 - P

Create a Sales Document

Creating a Sales Document is similar to creating a Customer. The minimum required properties are
Sales Doc ID, Sales Doc Type, and Customer Num. (You may provide your own Sales Doc Num, or else it will
be automatically generated for you.)

{

"Sales Doc ID": "STDORD",
"Sales Doc Type": "ORDER",
"Customer Num": "AARONFIT0001",
}

Make sure that the Http Request Method is set to POST:

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth20 ® 1o environment ¥

http:/localhost:5501/api'salesdocument POST v URL params Headers (2)

Session-1D 908a797e-adar-4d7-bb59-1d66131 ki ezt il
Content-Type application/json

Header Value =]

form-data x-www-form-urlencoded raw binary JSON (application/json) ~

&

Preview Pre-request script Tests Add to collection m

As you can see, since we have not supplied a Sales Doc Num value, the response shows that the Sales Document
Number has been automatically generated for us:

Body Cookies Headers (15) Tests 201 Created E 156 ms
Pretty Raw Preview =8 Q E |3 JSON ~

“Sales_Doc_Type": "ORDER",

"Sales_Doc_Num": "ORDST2242", |

"Sales Doc_ID": "STDCRD™,

"Doc_Date": "2015-82-23T08:20:00.000-05:08",
"Actual_ Ship Date": "2015-82-23T88:00:20.002-85:02",
"Fulfillment_Date"”: "2015-82-23Te0:00:00.800-85:208",
"Source”: "",

“Sales_Batch": "ORDER",

"Customer_Num": "AARONFITE281",

oan

"Customer_Name":
"Ril1l Tn Addrez=s Cada™- ™"

Create a Sales Line Item

When creating a Sales Line Item, minimum required properties are Sales Doc Type, Sales Doc Num, and
Item Number. Line Num and Component Seq Num can be provided, otherwise they will be automatically
generated:

Add them to the Lineltems property in Sales Document when POSTing the document (each Line Item Object in
the Lineltems array should at least contain the minimum required properties listed in the following point):

{

"Sales Doc Type": "ORDER",
"Sales Doc Num": "ORDST2242",
"Item Number": "A100",

}

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth20 ® 1o environment ¥

http:#localhost:5501/api/saleslineitem POST A URL params
Session-1D 908a797e-adar-4d7-bb59-1d66131 ki ezt il
Content-Type application/json
Header Value =]
form-data x-www-form-urlencoded raw binary JSON (application/json) ~

Headers (2)

pe": "ORDER",

: "ORDST2242",

Preview Pre-request script Tests Add to collection

Body Cookies Headers (14) Tests 201 Created E 130 ms
Pretty = Raw Preview e Q, Ik JSON -

“Sales_Doc_Type": "ORDER",
“Sales Doc_Num": "ORDST2242 ",
"Line_Num": 16384,

"Component_Seq_MNum": @,

"Source": "Open”,

“Item Mumber": "Alaa ™,
"Item_Description”: "Audioc System ™,
“Is_Non_Inventory": false,
"Is_Dropship™: false,
"UofM_Schedule™: "PHOME 1-1& ",
"Unit_Of Measure": "Each ",

"Baca IlafM" . "Eaorh "

The document and line items will be automatically updated with price, etc.

Updating a Sales Document

Updating Sales Document (or any other Object) properties is straight-forward. Simply look up the Object you
wish to update, and send a PUT request to the specified URL with the properties you wish to update and their

new values.

For example, to update a Sales Document, we can look up the PUT request URL format in the API Help Page:

WL APl 3dEsUULUINISNIU]SdIEs_ UUL | YPEH{SdIEs UL INUIG

PUT apifSalesDocument/{Sales Doc Typel{Sales Doc_Num}

NFEl FTEF anifRalaeNnrnmeant/M2alae NMoe TunelilMalae Doe Moml

We can see that we have to send the Sales Doc Type and Sales Doc Num Primary Keys so that the API knows
which object to update. In Postman, change the Http Request Method to PUT, fill in the URL, and supply the

properties you wish to update. In our example, we will update the Customer PO Num:

{

"Customer PO Num": "New PO 1234",
}

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth2.0 @ 1o environment ¥

http:/localhost:5501/api'salesdocument/ORDER/ORDST2242

PUT v URL params Headers (2)

Session-ID 908ar9fe-adar-4d71-bb59-1d66131 el s
Content-Type application/json
Header Value =]
form-data X-www-form-urlencoded raw binary JSON (application/json) ¥

1-|{
iz "Customer_PO_Num": "New PO 1234",

3y

Preview Pre-request script Tests Add to collection

In the response, you can see that the Customer PO Num has been updated:

Ll I LD N L

¥

"Fax": "312555e1a28000",

"Price_Level™: ""

a

"Customer PO _Num": “MNEW PO 1234"_,]
"Status™: "FP",

"Req_Ship Date": "2015-82-03T00:00:00.000",

"Cuhtat+al" . 18532 57

Forwarding a Sales Document

Page:
Workflow

Provides the ability to forward Sales Documents through SalesPad Workflow

API Description

PUT api/Workflow/{Sales_Doc_Type}/{Sales_Doc_Num}/Forward

Provided that you have workflow set up in SalesPad, it is easy to forward documents, as shown in the API Help

Forward a Sales Document to the next queue in workflow

In Postman, make sure the Http Request Method is set to PUT, and fill in the URL with the document you wish to

forward (Note that no body is required in this request):

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth2.0 @ 1o environment ¥

httpz//localhost:5501/apinVorkflow/ORDER/ORDST2242/Forward

PUT

URL params Headers (2)
Session-ID 908a79fe-adar-4d71-bb59-1d6613 il el e
Content-Type application/json
Header Value =]
form-data x-www-form-urlencoded raw binary JSON (application/json) ¥
1
El
Preview Pre-request script Tests Add to collection m
If successful, you will see a response similar to the following:
Body Cookies Headers (15) Tests m 200 OK m 61 ms
Pretty — Raw Preview 52 Q, Ik JSON ~
1
"StatusCode™: "OK",
"ErrorCode”: @,
"ErrorCodeMessage”: "No Error”,
— "Messages": [
e N\ ORDST2242% ------------------—- \ The document will be moved to the REVIEW queue. %\ "
]
}

If the document is already in the last queue, you will likely get a message similar to the following:

Body Cookies Headers (15) Tests m 500 Internal Server Error m 85ms
Pretty Raw Preview 22 Q, F [JSON -
{

"StatusCode": "InternalServerError”,
"ErrorCode™: 1866,

"ErrorCodeMessage”: "Exception - General”,
— "Messages": [

Deleting a Sales Document

"Document Mot Forwarded. Possible reasons include being in the last queue of the workflow.”

Deleting a Sales Document (or any other Object) is also straight-forward. Simply use the API Help Page to look
up the Object you wish to delete, and send a DELETE request to the specified URL.

FU L dpi SIS ULUINIENU{SdIcs_LUL | YRS H{DdISs_LJL_INUING

DELETE api/SalesDocument/{Sales_Doc_Type}{Sales_Doc_Num}

FAT T memaliftmlan sl sssmm e I e AT e

Mimem Tarmead T la s T -

LA PP |

In Postman, flip the Http Request Method to DELETE, and fill in the URL with the Object you wish to delete

(Note that no body is required in this request):

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth2.0 @ 1o environment ¥

httpz//localhost:5501/apirSalesDocument’ORDER/ORDST2242 DELETE + URL params Headers (2)

Session-1D 908a797e-adar-4d71-bb59-1d66131 i il (i
Content-Type application/json
Header Value =]

form-data x-www-form-urlencoded raw binary JSON (application/json) ¥

1

Preview Pre-request script Tests Add to collection m

If successful, the response message should look like the following:
Body Cookies Headers (15) Tests m 200 OK m 108 ms

Pretty Raw Preview =8 Q E |3 JSON =

"StatusCode™: "OK",

"ErrorCode”: @,

“ErrorCodeMessage”: "No Error”,
— "Messages": |

"SalesDocument Deleted.”

Deleting a Session / Logging Out

It is a good idea to delete your session when finished making requests. SalesPad WebAPI will automatically
delete sessions older than 15 minutes, but during that time period you will still be logged in, and consuming a
seat of SalesPad. Deleting your session will also delete any document locks you may have acquired during your
session.

To delete your session, simply make a request to DELETE api/Session, with the Session-ID header as usual
(again, no body is required):

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth2.0 @ 1o environment ¥

httpz//localhost:5501/api/session | DELETE Y| URL params

Headers (2)

Session-1D 908a797e-adar-4d71-bb59-1d66131 i il (i
Content-Type application/json
Header Value =]

form-data x-www-form-urlencoded raw binary JSON (application/json) ¥

1

Preview Pre-request script Tests Add to collection

If successful, you should get a response similar to the following:

Body Cookies Headers (15) Tests m 200 OK m 22 ms

Pretty Raw Preview =8 Q i+ JSON =

"StatusCode™: "OK",

"ErrorCode™: @,

"ErrorCodeMessage™: "No Error”,
— "Messages": |

"Session and Sales Document Locks deleted.”

